|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectweka.classifiers.Classifier
weka.classifiers.functions.LinearRegression
public class LinearRegression
Class for using linear regression for prediction. Uses the Akaike criterion for model selection, and is able to deal with weighted instances.
Valid options are:-D Produce debugging output. (default no debugging output)
-S <number of selection method> Set the attribute selection method to use. 1 = None, 2 = Greedy. (default 0 = M5' method)
-C Do not try to eliminate colinear attributes.
-R <double> Set ridge parameter (default 1.0e-8).
| Field Summary | |
|---|---|
static int |
SELECTION_GREEDY
Attribute selection method: Greedy method |
static int |
SELECTION_M5
Attribute selection method: M5 method |
static int |
SELECTION_NONE
Attribute selection method: No attribute selection |
static Tag[] |
TAGS_SELECTION
Attribute selection methods |
| Constructor Summary | |
|---|---|
LinearRegression()
|
|
| Method Summary | |
|---|---|
java.lang.String |
attributeSelectionMethodTipText()
Returns the tip text for this property |
void |
buildClassifier(Instances data)
Builds a regression model for the given data. |
double |
classifyInstance(Instance instance)
Classifies the given instance using the linear regression function. |
double[] |
coefficients()
Returns the coefficients for this linear model. |
java.lang.String |
debugTipText()
Returns the tip text for this property |
java.lang.String |
eliminateColinearAttributesTipText()
Returns the tip text for this property |
SelectedTag |
getAttributeSelectionMethod()
Gets the method used to select attributes for use in the linear regression. |
Capabilities |
getCapabilities()
Returns default capabilities of the classifier. |
boolean |
getDebug()
Controls whether debugging output will be printed |
boolean |
getEliminateColinearAttributes()
Get the value of EliminateColinearAttributes. |
java.lang.String[] |
getOptions()
Gets the current settings of the classifier. |
java.lang.String |
getRevision()
Returns the revision string. |
double |
getRidge()
Get the value of Ridge. |
java.lang.String |
globalInfo()
Returns a string describing this classifier |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options. |
static void |
main(java.lang.String[] argv)
Generates a linear regression function predictor. |
int |
numParameters()
Get the number of coefficients used in the model |
java.lang.String |
ridgeTipText()
Returns the tip text for this property |
void |
setAttributeSelectionMethod(SelectedTag method)
Sets the method used to select attributes for use in the linear regression. |
void |
setDebug(boolean debug)
Controls whether debugging output will be printed |
void |
setEliminateColinearAttributes(boolean newEliminateColinearAttributes)
Set the value of EliminateColinearAttributes. |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
void |
setRidge(double newRidge)
Set the value of Ridge. |
java.lang.String |
toString()
Outputs the linear regression model as a string. |
void |
turnChecksOff()
Turns off checks for missing values, etc. |
void |
turnChecksOn()
Turns on checks for missing values, etc. |
| Methods inherited from class weka.classifiers.Classifier |
|---|
distributionForInstance, forName, makeCopies, makeCopy |
| Methods inherited from class java.lang.Object |
|---|
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Field Detail |
|---|
public static final int SELECTION_M5
public static final int SELECTION_NONE
public static final int SELECTION_GREEDY
public static final Tag[] TAGS_SELECTION
| Constructor Detail |
|---|
public LinearRegression()
| Method Detail |
|---|
public void turnChecksOff()
public void turnChecksOn()
public java.lang.String globalInfo()
public Capabilities getCapabilities()
getCapabilities in interface CapabilitiesHandlergetCapabilities in class ClassifierCapabilities
public void buildClassifier(Instances data)
throws java.lang.Exception
buildClassifier in class Classifierdata - the training data to be used for generating the
linear regression function
java.lang.Exception - if the classifier could not be built successfully
public double classifyInstance(Instance instance)
throws java.lang.Exception
classifyInstance in class Classifierinstance - the test instance
java.lang.Exception - if classification can't be done successfullypublic java.lang.String toString()
toString in class java.lang.Objectpublic java.util.Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class Classifier
public void setOptions(java.lang.String[] options)
throws java.lang.Exception
-D Produce debugging output. (default no debugging output)
-S <number of selection method> Set the attribute selection method to use. 1 = None, 2 = Greedy. (default 0 = M5' method)
-C Do not try to eliminate colinear attributes.
-R <double> Set ridge parameter (default 1.0e-8).
setOptions in interface OptionHandlersetOptions in class Classifieroptions - the list of options as an array of strings
java.lang.Exception - if an option is not supportedpublic double[] coefficients()
public java.lang.String[] getOptions()
getOptions in interface OptionHandlergetOptions in class Classifierpublic java.lang.String ridgeTipText()
public double getRidge()
public void setRidge(double newRidge)
newRidge - Value to assign to Ridge.public java.lang.String eliminateColinearAttributesTipText()
public boolean getEliminateColinearAttributes()
public void setEliminateColinearAttributes(boolean newEliminateColinearAttributes)
newEliminateColinearAttributes - Value to assign to EliminateColinearAttributes.public int numParameters()
public java.lang.String attributeSelectionMethodTipText()
public void setAttributeSelectionMethod(SelectedTag method)
method - the attribute selection method to use.public SelectedTag getAttributeSelectionMethod()
public java.lang.String debugTipText()
debugTipText in class Classifierpublic void setDebug(boolean debug)
setDebug in class Classifierdebug - true if debugging output should be printedpublic boolean getDebug()
getDebug in class Classifierpublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class Classifierpublic static void main(java.lang.String[] argv)
argv - the options
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||