|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectweka.classifiers.Classifier
weka.classifiers.trees.m5.M5Base
weka.classifiers.rules.M5Rules
public class M5Rules
Generates a decision list for regression problems using separate-and-conquer. In each iteration it builds a model tree using M5 and makes the "best" leaf into a rule.
For more information see:
Geoffrey Holmes, Mark Hall, Eibe Frank: Generating Rule Sets from Model Trees. In: Twelfth Australian Joint Conference on Artificial Intelligence, 1-12, 1999.
Ross J. Quinlan: Learning with Continuous Classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, 343-348, 1992.
Y. Wang, I. H. Witten: Induction of model trees for predicting continuous classes. In: Poster papers of the 9th European Conference on Machine Learning, 1997.
@inproceedings{Holmes1999,
author = {Geoffrey Holmes and Mark Hall and Eibe Frank},
booktitle = {Twelfth Australian Joint Conference on Artificial Intelligence},
pages = {1-12},
publisher = {Springer},
title = {Generating Rule Sets from Model Trees},
year = {1999}
}
@inproceedings{Quinlan1992,
address = {Singapore},
author = {Ross J. Quinlan},
booktitle = {5th Australian Joint Conference on Artificial Intelligence},
pages = {343-348},
publisher = {World Scientific},
title = {Learning with Continuous Classes},
year = {1992}
}
@inproceedings{Wang1997,
author = {Y. Wang and I. H. Witten},
booktitle = {Poster papers of the 9th European Conference on Machine Learning},
publisher = {Springer},
title = {Induction of model trees for predicting continuous classes},
year = {1997}
}
Valid options are:
-N Use unpruned tree/rules
-U Use unsmoothed predictions
-R Build regression tree/rule rather than a model tree/rule
-M <minimum number of instances> Set minimum number of instances per leaf (default 4)
| Constructor Summary | |
|---|---|
M5Rules()
Constructor |
|
| Method Summary | |
|---|---|
java.lang.String |
getRevision()
Returns the revision string. |
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on. |
java.lang.String |
globalInfo()
Returns a string describing classifier |
static void |
main(java.lang.String[] args)
Main method by which this class can be tested |
| Methods inherited from class weka.classifiers.trees.m5.M5Base |
|---|
buildClassifier, buildRegressionTreeTipText, classifyInstance, enumerateMeasures, generateRulesTipText, getBuildRegressionTree, getCapabilities, getM5RootNode, getMeasure, getMinNumInstances, getOptions, getUnpruned, getUseUnsmoothed, listOptions, measureNumRules, minNumInstancesTipText, setBuildRegressionTree, setMinNumInstances, setOptions, setUnpruned, setUseUnsmoothed, toString, unprunedTipText, useUnsmoothedTipText |
| Methods inherited from class weka.classifiers.Classifier |
|---|
debugTipText, distributionForInstance, forName, getDebug, makeCopies, makeCopy, setDebug |
| Methods inherited from class java.lang.Object |
|---|
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Constructor Detail |
|---|
public M5Rules()
| Method Detail |
|---|
public java.lang.String globalInfo()
globalInfo in class M5Basepublic TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlergetTechnicalInformation in class M5Basepublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class Classifierpublic static void main(java.lang.String[] args)
args - an array of options
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||