|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectweka.clusterers.AbstractClusterer
weka.clusterers.RandomizableClusterer
weka.clusterers.sIB
public class sIB
Cluster data using the sequential information bottleneck algorithm.
Note: only hard clustering scheme is supported. sIB assign for each instance the cluster that have the minimum cost/distance to the instance. The trade-off beta is set to infinite so 1/beta is zero.
For more information, see:
Noam Slonim, Nir Friedman, Naftali Tishby: Unsupervised document classification using sequential information maximization. In: Proceedings of the 25th International ACM SIGIR Conference on Research and Development in Information Retrieval, 129-136, 2002.
@inproceedings{Slonim2002,
author = {Noam Slonim and Nir Friedman and Naftali Tishby},
booktitle = {Proceedings of the 25th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages = {129-136},
title = {Unsupervised document classification using sequential information maximization},
year = {2002}
}
Valid options are:
-I <num> maximum number of iterations (default 100).
-M <num> minimum number of changes in a single iteration (default 0).
-N <num> number of clusters. (default 2).
-R <num> number of restarts. (default 5).
-U set not to normalize the data (default true).
-V set to output debug info (default false).
-S <num> Random number seed. (default 1)
| Constructor Summary | |
|---|---|
sIB()
|
|
| Method Summary | |
|---|---|
void |
buildClusterer(Instances data)
Generates a clusterer. |
int |
clusterInstance(Instance instance)
Cluster a given instance, this is the method defined in Clusterer interface do nothing but just return the cluster assigned to it |
java.lang.String |
debugTipText()
Returns the tip text for this property |
Capabilities |
getCapabilities()
Returns default capabilities of the clusterer. |
boolean |
getDebug()
Get debug mode |
int |
getMaxIterations()
Get the max number of iterations |
int |
getMinChange()
get the minimum number of changes |
boolean |
getNotUnifyNorm()
Get whether to normalize instances to unify prior probability before building the clusterer |
int |
getNumClusters()
Get the number of clusters |
int |
getNumRestarts()
Get the number of restarts |
java.lang.String[] |
getOptions()
Gets the current settings. |
java.lang.String |
getRevision()
Returns the revision string. |
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on. |
java.lang.String |
globalInfo()
Returns a string describing this clusterer |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options. |
static void |
main(java.lang.String[] argv)
|
java.lang.String |
maxIterationsTipText()
Returns the tip text for this property. |
java.lang.String |
minChangeTipText()
Returns the tip text for this property. |
java.lang.String |
notUnifyNormTipText()
Returns the tip text for this property. |
int |
numberOfClusters()
Get the number of clusters |
java.lang.String |
numClustersTipText()
Returns the tip text for this property. |
java.lang.String |
numRestartsTipText()
Returns the tip text for this property. |
void |
setDebug(boolean v)
Set debug mode - verbose output |
void |
setMaxIterations(int i)
Set the max number of iterations |
void |
setMinChange(int m)
set the minimum number of changes |
void |
setNotUnifyNorm(boolean b)
Set whether to normalize instances to unify prior probability before building the clusterer |
void |
setNumClusters(int n)
Set the number of clusters |
void |
setNumRestarts(int i)
Set the number of restarts |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
java.lang.String |
toString()
|
| Methods inherited from class weka.clusterers.RandomizableClusterer |
|---|
getSeed, seedTipText, setSeed |
| Methods inherited from class weka.clusterers.AbstractClusterer |
|---|
distributionForInstance, forName, makeCopies, makeCopy |
| Methods inherited from class java.lang.Object |
|---|
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Constructor Detail |
|---|
public sIB()
| Method Detail |
|---|
public void buildClusterer(Instances data)
throws java.lang.Exception
buildClusterer in interface ClustererbuildClusterer in class AbstractClustererdata - the training instances
java.lang.Exception - if something goes wrong
public int clusterInstance(Instance instance)
throws java.lang.Exception
clusterInstance in interface ClustererclusterInstance in class AbstractClustererinstance - the instance to be assigned to a cluster
java.lang.Exception - if instance could not be clustered
successfully
public void setOptions(java.lang.String[] options)
throws java.lang.Exception
-I <num> maximum number of iterations (default 100).
-M <num> minimum number of changes in a single iteration (default 0).
-N <num> number of clusters. (default 2).
-R <num> number of restarts. (default 5).
-U set not to normalize the data (default true).
-V set to output debug info (default false).
-S <num> Random number seed. (default 1)
setOptions in interface OptionHandlersetOptions in class RandomizableClustereroptions - the list of options as an array of strings
java.lang.Exception - if an option is not supportedpublic java.util.Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class RandomizableClustererpublic java.lang.String[] getOptions()
getOptions in interface OptionHandlergetOptions in class RandomizableClustererpublic java.lang.String debugTipText()
public void setDebug(boolean v)
v - true for verbose outputpublic boolean getDebug()
public java.lang.String maxIterationsTipText()
public void setMaxIterations(int i)
i - max number of iterationspublic int getMaxIterations()
public java.lang.String minChangeTipText()
public void setMinChange(int m)
m - the minimum number of changespublic int getMinChange()
public java.lang.String numClustersTipText()
public void setNumClusters(int n)
n - number of clusterspublic int getNumClusters()
public int numberOfClusters()
numberOfClusters in interface ClusterernumberOfClusters in class AbstractClustererpublic java.lang.String numRestartsTipText()
public void setNumRestarts(int i)
i - number of restartspublic int getNumRestarts()
public java.lang.String notUnifyNormTipText()
public void setNotUnifyNorm(boolean b)
b - true to normalize, otherwise falsepublic boolean getNotUnifyNorm()
public java.lang.String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlerpublic Capabilities getCapabilities()
getCapabilities in interface ClusterergetCapabilities in interface CapabilitiesHandlergetCapabilities in class AbstractClustererCapabilitiespublic java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class AbstractClustererpublic static void main(java.lang.String[] argv)
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||