|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectweka.classifiers.Classifier
weka.classifiers.trees.lmt.LogisticBase
weka.classifiers.trees.ft.FTtree
weka.classifiers.trees.ft.FTInnerNode
public class FTInnerNode
Class for Functional Inner tree structure.
| Constructor Summary | |
|---|---|
FTInnerNode(boolean errorOnProbabilities,
int numBoostingIterations,
int minNumInstances,
double weightTrimBeta,
boolean useAIC)
Constructor for Functional Inner tree node. |
|
| Method Summary | |
|---|---|
void |
buildClassifier(Instances data)
Method for building a Functional Inner tree (only called for the root node). |
void |
buildTree(Instances data,
SimpleLinearRegression[][] higherRegressions,
double totalInstanceWeight,
double higherNumParameters)
Method for building the tree structure. |
double[] |
distributionForInstance(Instance instance)
Returns the class probabilities for an instance given by the Functional tree. |
java.lang.String |
getRevision()
Returns the revision string. |
double |
prune()
Prunes a tree using C4.5 pruning procedure. |
| Methods inherited from class weka.classifiers.trees.ft.FTtree |
|---|
assignIDs, assignLeafModelNumbers, cleanup, getConstError, getModelParameters, getNodes, getNodes, getNumInnerNodes, getNumLeaves, graph, hasModels, modelDistributionForInstance, modelsToString, numLeaves, numNodes, toString |
| Methods inherited from class weka.classifiers.trees.lmt.LogisticBase |
|---|
getMaxIterations, getNumRegressions, getUseAIC, getUsedAttributes, getWeightTrimBeta, percentAttributesUsed, setHeuristicStop, setMaxIterations, setUseAIC, setWeightTrimBeta |
| Methods inherited from class weka.classifiers.Classifier |
|---|
classifyInstance, debugTipText, forName, getCapabilities, getDebug, getOptions, listOptions, makeCopies, makeCopy, setDebug, setOptions |
| Methods inherited from class java.lang.Object |
|---|
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Constructor Detail |
|---|
public FTInnerNode(boolean errorOnProbabilities,
int numBoostingIterations,
int minNumInstances,
double weightTrimBeta,
boolean useAIC)
errorOnProbabilities - Use error on probabilities for stopping criterion of LogitBoost?numBoostingIterations - sets the numBoostingIterations parameterminNumInstances - minimum number of instances at which a node is considered for splitting| Method Detail |
|---|
public void buildClassifier(Instances data)
throws java.lang.Exception
buildClassifier in class FTtreedata - the data to train with
java.lang.Exception - if something goes wrong
public void buildTree(Instances data,
SimpleLinearRegression[][] higherRegressions,
double totalInstanceWeight,
double higherNumParameters)
throws java.lang.Exception
buildTree in class FTtreedata - the training data passed on to this nodehigherRegressions - An array of regression functions produced by LogitBoost at higher
levels in the tree. They represent a logistic regression model that is refined locally
at this node.totalInstanceWeight - the total number of training exampleshigherNumParameters - effective number of parameters in the logistic regression model built
in parent nodes
java.lang.Exception - if something goes wrong
public double prune()
throws java.lang.Exception
prune in class FTtreejava.lang.Exception - if something goes wrong
public double[] distributionForInstance(Instance instance)
throws java.lang.Exception
distributionForInstance in class FTtreeinstance - the instance
java.lang.Exception - if distribution can't be computed successfullypublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class FTtree
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||